日本高清视频永久网站www丨欧美成人猛交69丨成人国内精品久久久久影院vr丨色婷婷99一区丨国产探花精品一区

Welcome:Shanghai Zhicai Electronic Technology co., LTD
Language: Chinese ∷  English

Industry New

Why must there be a series resistor between each LED?

Hits : Update:2019-03-15 10:44


Compared with the early LED light-emitting diodes, the most remarkable feature of the new ultra-bright LEDs is that the brightness is increased by nearly a hundred times. The early LEDs have a luminous intensity of only a few ten to several tens of mcd, while the new LEDs have a minimum luminous intensity of 1500 mcd. Another obvious difference is that the color of the light-emitting tube is different. Early LEDs used a colored encapsulation material to obtain light of a certain color, that is, the encapsulating material functions as a color filter. The new super bright LED housing is a colorless transparent resin package, and the illuminator itself can emit light of a certain wavelength to present a certain color. It is widely used in outdoor billboards, electronic displays, traffic lights, signage, car taillights, LCD backlights, etc.

Spectral distribution: At present, the spectral wavelength distribution of super bright LEDs commonly used in several colors in China is 460-636 nm, and the wavelengths are blue, green, yellow-green, yellow, yellow-orange, and red in order from short to long. Typical peak wavelengths for several common color LEDs are: blue - 470 nm, cyan - 505 nm, green - 525 nm, yellow - 590 nm, orange - 615 nm, red - 625 nm.

Forward conduction voltage drop distribution: In the early days, the chip material of various color LEDs was GaAs, and the forward voltage drop was about 1.8V. The chip materials of different colors of super bright LEDs are different. The chip materials of red, orange and yellow LEDs are AlGaInP, and the forward voltage drop is 1.8V~2.5V, with a typical value of 2.0V; green, blue and white. The chip material of the LED is InGaN, and the forward voltage drop is 2.8-4.2V, which is typically 3.6V.


Compared with the early LED light-emitting diodes, the most remarkable feature of the new ultra-bright LEDs is that the brightness is increased by nearly a hundred times. The early LEDs have a luminous intensity of only a few ten to several tens of mcd, while the new LEDs have a minimum luminous intensity of 1500 mcd. Another obvious difference is that the color of the light-emitting tube is different. Early LEDs used a colored encapsulation material to obtain light of a certain color, that is, the encapsulating material functions as a color filter. The new super bright LED housing is a colorless transparent resin package, and the illuminator itself can emit light of a certain wavelength to present a certain color. It is widely used in outdoor billboards, electronic displays, traffic lights, signage, car taillights, LCD backlights, etc.

Spectral distribution: At present, the spectral wavelength distribution of super bright LEDs commonly used in several colors in China is 460-636 nm, and the wavelengths are blue, green, yellow-green, yellow, yellow-orange, and red in order from short to long. Typical peak wavelengths for several common color LEDs are: blue - 470 nm, cyan - 505 nm, green - 525 nm, yellow - 590 nm, orange - 615 nm, red - 625 nm.

Forward conduction voltage drop distribution: In the early days, the chip material of various color LEDs was GaAs, and the forward voltage drop was about 1.8V. The chip materials of different colors of super bright LEDs are different. The chip materials of red, orange and yellow LEDs are AlGaInP, and the forward voltage drop is 1.8V~2.5V, with a typical value of 2.0V; green, blue and white. The chip material of the LED is InGaN, and the forward voltage drop is 2.8-4.2V, which is typically 3.6V.


用手機掃描二維碼關閉
二維碼
主站蜘蛛池模板: 洛宁县| 龙泉市| 长宁县| 台山市| 新民市| 青神县| 遵义县| 康乐县| 历史| 监利县| 泗阳县| 烟台市| 广灵县| 油尖旺区| 彭泽县| 宜良县| 米泉市| 望城县| 宁城县| 浦县| 白水县| 绥滨县| 威海市| 郑州市| 兴化市| 德阳市| 栖霞市| 龙门县| 永仁县| 内乡县| 陆良县| 永春县| 皮山县| 孝昌县| 益阳市| 德格县| 宝清县| 湾仔区| 志丹县| 延长县| 喀喇沁旗|